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Abstract. Non-line-of-sight (NLOS) imaging has emerged as a prominent technique for reconstructing
obscured objects from images that undergo multiple diffuse reflections. This imaging method has
garnered significant attention in diverse domains, including remote sensing, rescue operations, and intelligent
driving, due to its wide-ranging potential applications. Nevertheless, accurately modeling the incident light
direction, which carries energy and is captured by the detector amidst random diffuse reflection directions,
poses a considerable challenge. This challenge hinders the acquisition of precise forward and inverse
physical models for NLOS imaging, which are crucial for achieving high-quality reconstructions. In this
study, we propose a point spread function (PSF) model for the NLOS imaging system utilizing ray tracing
with random angles. Furthermore, we introduce a reconstruction method, termed the physics-constrained
inverse network (PCIN), which establishes an accurate PSF model and inverse physical model by
leveraging the interplay between PSF constraints and the optimization of a convolutional neural network.
The PCIN approach initializes the parameters randomly, guided by the constraints of the forward PSF
model, thereby obviating the need for extensive training data sets, as required by traditional deep-learning
methods. Through alternating iteration and gradient descent algorithms, we iteratively optimize the diffuse
reflection angles in the PSF model and the neural network parameters. The results demonstrate that
PCIN achieves efficient data utilization by not necessitating a large number of actual ground data groups.
Moreover, the experimental findings confirm that the proposed method effectively restores the hidden
object features with high accuracy.
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1 Introduction
Non-line-of-sight (NLOS) imaging technique can recover infor-
mation of a hidden object from light scattered by surrounding
scenes.1–5 The light in the NLOS system originates from a pulsed

laser or other sources to illuminate the diffuse reflective relay
surface (rough wall, rock face, etc.); then the diffused light is
incident on an object out of the line of sight and is scattered back
to the relay surface. Detectors, such as a single-photon avalanche
diode (SPAD) or a conventional camera, receive speckle images,
which can recover shape, location, and albedo of the hidden ob-
ject from multiple diffuse lights.6–8 NLOS imaging technology
can utilize arbitrary walls as mirrors and holds the potential to
revolutionize many critical applications, such as medical imaging,
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autonomous driving, remote sensing, and search and rescue
operations.9–14

The NLOS reconstruction problem is an inverse mathemati-
cal problem, aimed at recovering the hidden scene from the
detected signal. Several challenges exist in NLOS imaging
reconstruction. First, NLOS is an ill-posed problem character-
ized by a very low signal-to-noise ratio (SNR), resulting from
environmental noise and high light loss along the scattered
propagation path, rendering high-quality reconstruction chal-
lenging. Second, although the forward physical process is
clearly understood, the physical model lacks clarity in han-
dling multiple diffuse reflections in the NLOS system, making
it difficult to obtain accurate values such as the direction of
diffused light and energy attenuation. Furthermore, the inverse
process is extremely complex. As a result, it is challenging to
derive simple mathematical expressions directly, making high-
quality image recovery for the NLOS system through a physical
model difficult.

The research on NLOS imaging dates back to 2009 when
Kirmani15 proposed a framework utilizing time-of-flight camera
imagery and transient reasoning to reveal scene properties inac-
cessible to traditional computer vision. Building on Kirmani’s
work, Velten16 successfully recovered the three-dimensional
shape of objects hidden around corners, combining time-of-
flight techniques with computational reconstruction algorithms.
Subsequently, O’Toole17 introduced a confocal NLOS imaging
system. The confocal system, in contrast to traditional non-
confocal NLOS systems, facilitates finding a closed solution
to the NLOS problem and yields higher-quality image recon-
structions. Expanding on the confocal system, researchers have
developed methods like light-cone transformation,18 directional
light-cone transformation,19 and virtual wavefronts20 for NLOS
image restoration. However, these confocal methods employ the
time-of-flight approach with time-resolving detectors (such as
SPAD). As a result, the system requires data capture via scan-
ning. To ensure clarity in NLOS image reconstruction, this ap-
proach necessitates scanning numerous points, often exceeding
a measurement time of 10 min. Consequently, the prolonged
data acquisition required renders these methods unsuitable
for real-time NLOS imaging applications.

With the development of machine learning and neural net-
works, researchers have proposed data-driven algorithms for
NLOS image reconstruction. Chen et al.21 introduced a train-
able architecture that maps diffuse indirect reflections to scene
reflectance, relying solely on synthetic training data. To over-
come the long scan time associated with traditional systems.
Metzler22 employed a plane array complementary metal-
oxide-semiconductor (CMOS) detector to capture speckle im-
ages within a second. However, data acquisition in NLOS
imaging remains cumbersome, and there is currently a scarcity
of real large-scale data sets. These synthetic images are based
on the assumption that the relay wall is a standard Lambertian
surface. However, in reality, the wall often deviates from a
standard Lambertian surface, not conforming to isotropic
theory.

The point spread function (PSF) is a core concept in
image reconstruction. It describes the spot formed by a point
light source after traversing the optical system, serving as a
crucial link in the object-image conversion process of the
optical system.23–30 By understanding both the PSF and the
image produced by the optical system, information about
the object’s surface can be retrieved through deconvolution.

This technique has widespread applications in various
fields, including astronomy,31,32 microscopy,24,33 and medical
imaging,34,35

o ¼ F−1ðI∕ΦÞ; (1)

where F−1 represents inverse Fourier transformation, o is
the object information detected by the camara, and I and Φ
are Fourier transformations of the image and PSF matrix,
respectively.

Establishing a PSF model is crucial for image reconstruction
in scattering and diffuse reflection systems. Faber35 developed
a PSF model for weakly scattering media within an optical co-
herence tomography system, enabling the quantitative measure-
ment of attenuation coefficients. By manipulating a specific
single PSF, Xie et al.36 achieved depth-resolved imaging of thin
scattering media, extending beyond the original depth of field.
In the context of NLOS imaging systems, Pei et al.37 calculated
the PSF employing a Gaussian-shaped laser pulse and the
Poisson noise of a time-resolved camera. However, this model
had limitations in accurately reflecting the NLOS scattered
propagation process.

This work introduces a novel NLOS imaging recovery model
that addresses these limitations, incorporating advancements in
both the physical model and the computational reconstruction
algorithm. We developed an accurate forward PSF model using
ray tracing for the NLOS system, offering a physical constraint
for an untrained neural network. Contrary to previous methods
that assumed perfect isotropic reflectance, our proposed method
takes into account the randomness of actual reflection angles on
the relay wall. Furthermore, our method does not necessitate
training data sets to ascertain neural network parameters, setting
it apart from conventional deep-learning-based approaches.
Instead, it starts from the random initialization parameters of
the neural network, constrained by the forward physical model
and speckle image, and iteratively employs the gradient descent
algorithm to estimate parameters and establish the mapping
relationship. Experimental data were employed to validate the
proposed NLOS image reconstruction algorithm. Specifically,
we make the following contributions:

1. We proposed an advanced PSF model for the NLOS pro-
cess, initiating from the optical system’s wavefront aberration,
calculating the PSF at the optical pupil through reverse tracing,
and enhancing the PSF model by employing the forward propa-
gation process to simulate the light’s exit angle at the optical
pupil. This approach provides a more comprehensive represen-
tation of the NLOS imaging system by capturing the intricate
light-scattering process and yielding a more precise estimate of
the PSF.

2. We developed a physics-constrained inverse network
(PCIN) for NLOS imaging reconstruction. This method syner-
gizes the advantages of both physical models and deep-learning
techniques, providing a potent tool for reconstructing images of
obscured objects from captured speckle images. The proposed
method utilizes a physics-based model to guide the inverse net-
work, ensuring that the reconstructed image aligns with the
NLOS imaging system’s physical characteristics.

3. We performed experimental validation of the proposed
method for NLOS imaging reconstruction. Through experimen-
tation, the efficacy of the proposed method in identifying objects
of various shapes was demonstrated.
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2 Materials and Methods

2.1 PSF Model for NLOS Imaging

The experimental setup for the NLOS imaging system is pre-
sented in Fig. 1(a). A laser, emitting at a wavelength of
632.8 nm, is expanded and collimated by a lens group before
illuminating the wall. The light scatters toward the hidden
object, reflects back to the relay surface, and is captured as a
speckle image by a CMOS camera. In the speckle image, each
pixel corresponds to a point on the original object via the PSF
matrix, depicted in Fig. 1(b), where o represents the hidden
object, φ is the PSF matrix of the NLOS imaging system,
and i represents the captured speckle image. To elucidate this
relationship further, Fig. 1(c) presents a simple example of a
hidden object and its corresponding speckle image as captured
by the camera. This experimental arrangement and the associ-
ated data lay the groundwork for assessing the efficacy of the
proposed NLOS image reconstruction method.

In this context, the relay wall of the NLOS imaging system
can be conceptualized as a mirror exhibiting aberrations. This
conceptualization allows for the determination of the NLOS
imaging system’s PSF through wavefront aberration analysis.
Specifically, the PSF of a coherent optical system is expressed as

PSF ¼
ZZ

Pðu; vÞ exp½2πiðuxþ vyÞ�du dv; (2)

where Pðu; vÞ is the pupil function of the system, u, v is the
spatial frequency, which can be represented as u ¼ x0

λdi
, v ¼ y0

λdi
by the pupil rectangular coordinates x0, y0, and d is the distance
from the image plane to the exit pupil. The pupil function is
shown as:

8<
:

Pðx0; y0Þ ¼ Aðx0; y0Þ exp½ikWðx0; y0Þ�
Aðx0; y0Þ ¼ 1; r ≤ r0
Aðx0; y0Þ ¼ 0; r > r0

: (3)

The amplitude component of the pupil function, denoted as
Aðx0; y0Þ, is a function of the pupil shape. r0 is the radius of the
exit pupil. The parameter k is equal to 2π∕λ, where λ represents
the wavelength of the light source.Wðx0; y0Þ represents the wave
aberration of the optical system.

The scattered light-propagation diagram is shown in Fig. 2.
The diffuse reflection wall is considered as the combination of
both specular reflection and diffuse reflection. Under the ideal
imaging condition, the diffuse reflector is akin to a fully specu-
lar reflector. Consequently, the imaging lens group and the dif-
fuse reflection wall form an optical system where reverse tracing
is performed on the detector to obtain the position and radius of
the exit pupil for the NLOS optical system. Then, the relay wall
is regarded as an optical element with aberrations, and the op-
tical source in this system can be considered as a laser diffusely
reflected by the relay surface. Here, we employ an improved
diffuse reflection model proposed by Wolff et al.38 in which
the diffused surface is represented by microfacets arranged in
V-grooves, distributed over various orientations. The diffused
reflected radiance is formulated as a combination of the reflec-
tion radiance from microfacets, which accounts for masking and
shadowing, and the reflection radiance due to interreflections,

Lrðθr; θi;ϕr − ϕi; σÞ
¼ L1

rðθr; θi;ϕr − ϕi; σÞ þ L2
rðθr; θi;ϕr − ϕi; σÞ

¼ ρ
πLi cos θifAþ BMax½0; cosðϕr − ϕiÞ�× sin α tan βg

þ0.17
ρ2

π
Li cos θi

σ2

σ2 þ 0.13
×

�
1− cosðϕr − ϕiÞ

�
2β

π

�
2
�
;

(4)

where A ¼ 1 − 0.5 σ2

σ2þ0.33, B ¼ 0.45 σ2

σ2þ0.09, σ is the standard
deviation of the Gaussian distribution as a measure of surface
roughness, α ¼ Max½θr; θi�, β ¼ Min½θr; θi�, and ρ is the dif-
fuse albedo as defined by Lambert’s Law. Thus, the radiance
from the relay wall to the hidden object for the first diffused
reflection is derived as

Fig. 1 The NLOS system and reconstruction principle. (a) A confocal NLOS imaging systemwith a
CMOS camera to capture the image. (b) The imaging equation in an optical system with PSF and
(c) propagation process from object to image in the NLOS system.
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L1¼
ρ

π
L0 cos θi1fA1þB1Max½0;cosðϕr1−ϕi1Þ�×sin α1 tan β1g

þ0.17
ρ2

π
L0 cos θi1

σ2

σ2þ0.13
×

�
1−cosðϕr1−ϕi1Þ

�
2β1
π

�
2
�
;

(5)

where L0 is the radiance of the laser after beam expansion and
ϕi1 and θi1 are the azimuth and incident angles of the incident
light, respectively. For the NLOS system in this study, these
three parameters are constant. The radiance from a measured
object is given as

LO ¼ ρO
π
L1 cos θiOfAO þ BO Max½0; cosðϕrO − ϕiOÞ�

× sin αO tan βOgþ0.17
ρ2O
π
L1 cos θiO

σ2O
σ2O þ 0.13

×

�
1 − cosðϕrO − ϕiOÞ

�
2βO
π

�
2
�
; (6)

whereO is the hidden object, and the speckle image captured by
the CMOS detector is

I ¼ ρ

π
L2 cos θi2fA2 þ B2 Max½0; cosðϕr2 − ϕi2Þ�

× sin α2 tan β2gþ0.17
ρ2

π
L2 cos θi2

σ2

σ2 þ 0.13

×

�
1 − cosðϕr2 − ϕi2Þ

�
2β2
π

�
2
�
: (7)

For an optical system, the image captured by the detector can
also be expressed by

I ¼ OΦþ N: (8)

Equation (8) represents the expression with noise depicted in
Fig. 1(b) in the frequency domain. Here, Φ signifies the PSF
matrix of the NLOS system, and N symbolizes the system’s
noise. Within the NLOS system, the predominant noises include
photon noise, represented by Gaussian noise, and background

noise, which appears as a peak and a uniform offset in the
speckle image.22 To mitigate the impact of these noises on image
reconstruction, regularization techniques in deep learning and
data preprocessing strategies are implemented.

Retrieval of the hidden object image in the NLOS system
relies on solving Eqs. (3), (7), and (8) simultaneously. The pre-
cision of the PSF matrix, especially the exact exit angle of
diffuse reflection in the exit pupil, is critical for the success
of this retrieval process. If the exit angle is ascertainable, the
system’s wave aberration can be deduced through reverse
tracking, facilitating the derivation of the NLOS system’s PSF.
However, modeling the relay surface accurately becomes chal-
lenging with multiple diffuse reflections, thereby complicating
the attainment of the precise angle θi2 of diffused light.

2.2 Physics-Constrained Inverse Network

A critical challenge in NLOS imaging is the unknown specifics,
such as the size and location of the hidden object, and the PSF of
the optical system varying with position and field of view.
Consequently, accurately modeling the PSF of the NLOS
system solely based on physical theory is not feasible. Deep-
learning methods have been explored for computational imag-
ing. In this approach, object reconstruction is achieved through
the solution of an optimization problem. convolutional neural
network (CNN), as one of the methods in deep learning, has
been widely used in superresolution imaging,39–41 lensless imag-
ing,42,43 imaging estimation through scattering media,44,45 etc.
The utilization of CNN is deemed effective in modeling the
PSF matrix for NLOS imaging, as highlighted in the preceding
study.37 However, being a primarily data-driven technique, CNN
significantly relies on the volume of measured data. Its accuracy
in modeling the PSF matrix is also reliant on the amount of
available truth data. Additionally, this approach lacks con-
straints from physical models, leading to the neglect of a priori
information. Conversely, while the forward physical process of
the PSF in NLOS is clear, directly obtaining angle parameters in
the model is challenging due to multiple diffuse reflections. In
this paper, we propose a method known as PCIN, which com-
bines the advantages of a neural network and a physical model.
This method integrates the PSF model into traditional CNN ar-
chitecture and introduces a neural network that enables NLOS

Fig. 2 Light path in the NLOS system. (a) Wavefront propagation process of diffuse reflection and
(b) definition of diffuse reflection parameters.
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reconstruction without the necessity for data training. We name
this approach PCIN, with its workflow illustrated in Fig. 3. To
initiate the process of NLOS image recovery using the PCIN
algorithm, the speckle image is input into the CNN network
with random initial weights and the angles in the forward model.
The procedure for NLOS image recovery utilizing the PCIN
algorithm unfolds as follows:

1. The speckle image obtained from measurement is fed
into CNN with randomly initialized weights p0. The output
of the CNN is taken as the initial reconstruction of the NLOS
speckle image. The initial reconstruction is then incorporated
into the physical model with a randomly initialized diffuse angle
θ00. In this process, the forward physical model generates a
speckle image corresponding to the initial reconstructed image.
The loss is calculated between the measured speckle image and
the one obtained from the physical model to optimize the initial
physical parameters. This iterative process is repeated to derive
the final physical parameter θ0n. The detailed optimization pro-
cess is illustrated in the right flow of Fig. 3, with the network
structure kept unchanged.

2. The optimization variable replaces the initial value in the
network. The optimized physical parameter and reconstruction
image from Step 1 are fed into the network. The forward physi-
cal model is used to obtain the speckle image corresponding to
the initial reconstructed image, and the loss between the mea-
sured speckle image and the speckle image obtained from the
physical model is calculated to optimize the initial network
parameters. These steps are repeated iteratively to obtain the
final network parameters pn. The optimization process is illus-
trated in left flow 2 of Fig. 3, with the physical parameter
remaining unchanged.

3. These two steps are alternated, optimizing both the
network weights and physical model parameters until the final
network output, as shown in Fig. 3, is obtained.

The proposed method leverages the CNN’s robust modeling
capabilities to construct an inverse physical model neural net-
work, representing the inverse physical processes of NLOS.
Contrary to traditional deep-learning-based approaches, this
method does not necessitate extensive training data sets to

establish the parameters of this neural network. Instead, it em-
ploys a gradient descent algorithm with alternating iterations to
optimize both the neural network parameters and the unknown
parameters in the forward model. This optimization is con-
strained by the forward physical model and the measured
speckle image, enabling the estimation of parameters in both
the neural network and the forward model, and ultimately de-
riving the mapping relations. Therefore, the reconstruction of
the NLOS system can be retrieved by solving the optimization
problem,

R ¼ arg min
P;θ;ϕ

kÎ − Ik22 þ TVðÔÞ; (9)

where TV stands for total variation regularization and Ô
for reconstruction image obtained by CNN. Î for the speckle
image calculated by the forward PSF physical model and
reconstruction image Ô. Upon obtaining the optimized weight
P and diffused angle θ, the NLOS recovered image is estimated
and outputted as the final layer of the PCIN. Considering both
resolution and calculation speed, the size of the measured image
is selected as 512 pixels × 512 pixels. The network is imple-
mented in PyTorch. The renowned U-net architecture is em-
ployed for our CNN, utilizing the ADAM optimizer with a
learning rate set to 0.01. All computations were executed on
an Nvidia GTX 3090 GPU to guarantee computational effi-
ciency and accuracy.

3 Results
In this section, we present the experimental validation of the
proposed method. The experimental setup, shown in Fig. 4, em-
ploys a laser with a wavelength of 632.8 nm and an optical
power of 5 mW as the light source. A lens group expands
the beam, increasing the collimated beam diameter to 3 mm,
thereby illuminating the hidden object. The Dyhana 4040
CMOS camera with a sensitive area of 36.9 mm × 36.9 mm
and a field of view of 40 deg is chosen as the detection device,
which is capable of capturing information from the NLOS sys-
tem after 3 times of diffuse reflection. To adequately capture the

Fig. 3 Flowchart of PCIN algorithm for NLOS imaging reconstruction. The speckle image cap-
tured by the camera is put into CNN, and PCIN iteratively updates the parameters in CNN using
the loss function constructed by the speckle image and forward physical model. The optimized
parameters are utilized to obtain a high-quality reconstructed image.
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hidden object’s information without overexposure, the camera is
set to capture images with a 40 ms exposure time.

To evaluate the effectiveness of our proposed methodology,
four letters were chosen for imaging experiments. Specifically,
the light source was positioned 1.2 m from the relay wall with an
incident angle of 15 deg, and the hidden object was placed with
a 1-m separation from both the camera and the relay wall.

The reconstruction results of different exposure time and dif-
ferent postures for the selected hidden objects are presented in
Figs. 5 and 6, illustrating the capability of the proposed PCIN
method to reconstruct the shape of hidden objects from diffused
images. It is noteworthy that with camera exposure time of
fewer than 20 ms, the algorithm is generally unable to complete
the reconstruction due to insufficient information capture within

such a brief period. As the exposure time increases, there is a
corresponding enhancement in the accuracy and detail of the
reconstructed image. At an exposure time of 40 ms, the detailed
features of the object are essentially reconstructed. However,
increased exposure time inevitably leads to more noise in the
system, manifesting as poorer reconstruction quality at the im-
age edges.

Encouragingly, in the initial run, the network required more
than 4000 iterations and took several minutes to achieve satis-
factory results. For subsequent runs involving the same object
type, the optimization time was reduced to approximately 1800
iterations by leveraging the previous run’s optimization results
as input. Figure 6 displays the NLOS imaging reconstruction
results following posture changes. The results indicate that the

Fig. 4 Back and front of the experimental scene. Light passes from the laser, to the collimator, to
the wall, to the hidden object, and finally to the camera.

Fig. 5 Comparison of the reconstructed images of various exposure time from the proposed PCIN
method. (a) Speckle images of different exposure time captured by the camera. (b) Ground truth.
(c) Reconstructed images of different exposure time.
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proposed method can precisely recover fine features and accu-
rately determine the position and posture of hidden objects.

For further validation of the algorithm’s performance, we
chose more complex subjects, including cartoon images and
Chinese characters, as hidden objects. Similarly, the detector’s
exposure time varied from 10 to 40 ms. The inversion results of
the algorithm are shown in Fig. 7. With the increased complex-
ity of the object, shorter exposure time (10 to 20 ms) prove inad-
equate for reconstructing the hidden object. This suggests that
with complex hidden objects, shorter exposure time fail to cap-
ture sufficient effective information. When the exposure time is

increased to 30 ms, the algorithm can essentially reconstruct the
approximate shape of the object under examination. At an ex-
posure time of 40 ms, the algorithm fully reconstructs the shape
of hidden objects, capturing relatively fine features as well,
demonstrating its efficacy in reconstructing complex objects.

To evaluate the algorithm’s adaptability to diffusely reflect-
ing walls of various shapes, we fabricated concave, convex, and
wavy diffusely reflecting walls using highly flexible white
foam. The camera exposure time was set to 40 ms to capture
more information about the hidden objects. The reconstructed
images, as illustrated in Fig. 8, reveal that surface variations

Fig. 6 Comparison of the reconstructed images of various exposure time from the proposed PCIN
method. (a) Speckle images of different exposure time captured by the camera. (b) Ground truth.
(c) Reconstructed images of different exposure time.

Fig. 7 Comparison of the reconstructed cartoon images and Chinese characters of various ex-
posure time from the proposed PCIN method. (a) Speckle images of different exposure time cap-
tured by the camera. (b) Ground truth. (c) Reconstructed images of different exposure time.
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of the diffusely reflecting walls lead to differences in the
reconstruction of the same object. Nevertheless, the reconstruction
was generally successful. The wavy surface resulted in the poor-
est reconstruction outcome. This is attributed to the creases of
the wavy surface acting as light traps, causing the light to
undergo multiple diffuse reflections. Consequently, the quantity
of light carrying information about the target object that enters
the detector is diminished, reducing the precision and detail of
the reconstructed images.

The NLOS reconstruction can be seen as a phase-retrieval
(PR) problem. We compared the proposed PCIN method with
the alternating minimization PR algorithm (Alt-Min) from
Ref. 46 and the traditional CNNmethod from Ref. 22. The train-
ing data set for CNN is synthesized by a physical model. For
better reconstruction results, the exposure time is chosen as
40 ms. The comparative results in Fig. 9 demonstrate that both
the PCIN- and CNN-based methods outperform traditional PR
methods in terms of reconstruction quality within the same ex-
posure time. Subsequently, the incidence angle was adjusted to
10 deg. Notably, the CNN network model utilized parameters

trained in the previous step, rather than undergoing retraining.
The reconstructed images in Fig. 10 illustrate the limited uni-
versality of the traditional CNN network, highlighting its inap-
plicability in changing external environments. This implies that
both the PR algorithm and our proposed PCIN algorithm excel
in reconstructing NLOS images amid external environmental
changes, whereas the deep-learning approach necessitates gen-
erating new training data and retraining for each new scene.

The reconstruction results under a 20 ms exposure time are
shown in Fig. 11. Under conditions of poor SNR, the PR algo-
rithm is ineffective in reconstructing NLOS imaging results.
Conversely, both CNN and the proposed PCIN method demon-
strate strong noise robustness.

The PR algorithm was initialized with spectral initializers
and used default parameters.47 To optimize for the best
reconstruction, several minutes were used for PR and 38 h were
used for CNN to train parameters for net. Under low exposure
conditions, the number of optimization iterations for each
algorithm increases, yet the overall time remains relatively
consistent. From the above analysis, it is evident that both

Fig. 8 Comparison of the reconstructed images of convex, con-
cave, and wavy walls.

Fig. 9 Comparison of the reconstructed images of PR, CNN, and
PCIN methods at 40 ms exposure time.

Fig. 10 Comparison of the reconstructed images of PR, CNN,
and PCIN methods after a 10 deg change in image plane incli-
nation.

Fig. 11 Comparison of the reconstructed images of PR, CNN,
and PCIN methods at 20 ms exposure time.
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PR and PCIN methods do not require extensive data and exhibit
superior adaptability to various scenes compared to the CNN
method. Regarding runtime, the PR and the proposed model op-
erate on a similar scale, with both taking approximately several
minutes. While there are variations in the results depending on
different objects, these variations are not markedly significant.
However, at low SNRs, PR fails to reconstruct hidden objects,
while both PCIN and CNN exhibit robust noise resistance.

4 Discussion and Conclusion
In this study, we present a novel theoretical framework for
NLOS imaging based on a PSF physical model. The proposed
approach incorporates wave aberration theory and reverse
tracking to determine the pupil and obtain the PSF model of
the NLOS system. Additionally, we introduce an innovative in-
verse network framework, embedding a physics-constrained
neural network, to optimize unknown parameters in the physical
model via neural network iteration. This method achieves pre-
cise reconstruction outcomes through mutual feedback between
the neural network and the physical model. Although involving
an iterative process and potentially time-consuming for recon-
structions, this method significantly eliminates the need for
paired data sets during training. Consequently, this results in
substantial time savings in data preparation.

Experimental validation on NLOS imaging data confirms the
method’s success in reconstructing hidden objects from a single
measured speckle image with a 40 ms exposure time using
a traditional CMOS detector. The combination of the PSF model
and deep learning demonstrates potential for NLOS imaging in
complex environments, such as rescue operations and field ex-
ploration, and represents a significant advancement towards
high-resolution NLOS imaging.

In summary, this method fundamentally optimizes the tradi-
tional physical model using deep-learning techniques. In the
NLOS system, due to the random nature of diffuse reflections,
both the forward and reverse models cannot be obtained pre-
cisely. Specifically, the emergence angle at the optical pupil
in the forward tracing cannot be determined, which prevents
the direct establishment of the PSF matrix in the reverse model.
However, by integrating deep learning with the physical model,
the emergence angle in the physical model can be optimized,
enabling the reconstruction of an image from a speckle image
without training data or ground truth. Our proposed algorithm
achieves superior performance that neither the physical model
nor deep learning alone can achieve. This makes it ideal for sce-
narios like hostage rescue or intelligent driving in complex envi-
ronments, where extensive real measurement data for training is
not available. Unlike deep-learning methods that rely on specific
scenes, our algorithm can be applied to a wide range of scenes
and scenarios. Moreover, our model more accurately mirrors the
real NLOS propagation process compared to the traditional,
simplified NLOS physical model. Nonetheless, the model still
has some limitations, such as deviations in reconstruction accu-
racy, particularly at the edge, and longer running time. Our
future work will be focused on enhancing the algorithm’s per-
formance, accuracy, and running speed to enable real-time rapid
NLOS reconstruction.
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